
Web Application Programming
2025/26

Exam Project

Introduction
We want to develop a web application that allows the booking of sports fields (football,
volleyball, basketball) and the management of amateur tournaments. The application will
allow registered users to:

●​ book sports fields for specific time slots;
●​ search for fields, tournaments, teams and players;
●​ create tournaments associated with a specific sport;
●​ add teams and players to tournaments;
●​ automatically generate the tournament match schedule;
●​ enter match results;
●​ view automatically updated standings.

Users register with a unique username, name, and surname, and authenticate using a
password.​
The project consists of a server-side component that stores the data and handles
authentication/authorization, and a client-side component that displays the application and
data to the user.

Rules
The project must be developed independently. You may use any frameworks or libraries you
wish, as long as the provided API is fully respected. You may use any LLM to assist in
developing the project, but you are responsible for every single line of code. You must be
able to justify every choice you make (library, framework, design decision). Suggestion: rely
on an LLM if you know what you need to do and how to do it, but want to do it better. If you
don’t know how to do it, use an LLM at your own risk.

Main Features
●​ Field list: anyone can view all available sports fields, filtering by sport or via a text

search.
●​ Field details: each field includes name, sport type, address, and bookable slots.
●​ Availability view: users can view available time slots for a given date.
●​ Field booking: authenticated users can book any free time slot.

○​ Constraints: a slot cannot be booked more than once, and users cannot
book past slots.

●​ Booking cancellation: users may cancel their upcoming bookings.
●​ Tournament list: view all tournaments, either active or completed, with support for

search queries.
●​ Tournament creation: authenticated users may create a tournament specifying:

○​ name
○​ sport (football, volleyball, basketball)
○​ maximum number of teams
○​ start date

●​ Tournament editing: the creator may edit certain fields (e.g., name, max teams).
●​ Tournament deletion: only the creator may delete a tournament.
●​ Tournament details: includes general information, teams, matches, and standings.
●​ Team creation: the tournament’s creator can add teams by specifying a team name.
●​ Player management: teams can contain multiple players, each with:

○​ name
○​ surname
○​ optional jersey number

●​ Visualization: list of teams and players available for each tournament.
●​ Automatic schedule generation: once all teams are registered, the match schedule

can be generated (single round-robin).
●​ Match details: participating teams, date, optional field, status (upcoming/played),

and result.
●​ Result entry: the tournament creator may enter the final score once the match date

has passed.
●​ Search: partial, case-insensitive search should be available for fields, tournaments,

teams, players (eg, searching "cal" should match “Calcio”, “Calisthenics Arena”,
“California Team”, etc.);

●​ User list: it is possible to view a list of users, optionally filtered by a search
parameter. For each user, all tournaments created by them will be shown.

●​ User registration: A new user can register by providing:
○​ Username
○​ Password
○​ Name
○​ Surname

Standings are automatically computed based on match results (football: 3 points for a win, 1
for a draw, 0 for a loss, volleyball/basketball: 2 points for a win, 0 for a loss).
Standings are publicly available and include:

●​ points
●​ matches played
●​ goals/points scored and conceded
●​ goal/point difference

Authentication

Users can sign up by providing:

●​ username (unique)
●​ password
●​ name
●​ surname

Any operation that modifies data (booking a field, creating a tournament, adding teams,
entering results, etc.) must require authentication. After login, ensure that the user has the
necessary permissions (for example, only the tournament creator may modify or delete it)

REST Interface
The project requires the implementation of a REST interface. The API to be implemented is
listed below.
TODO: aggiungere endpoit users

Metodo API Descrizione

POST /api/auth/signup Register a new user

POST /api/auth/signin User login

GET /api/fields?q=query List of sports fields (searchable)

GET /api/fields/:id Field details

GET /api/fields/:id/slots?date=YYYY-MM-DD Availability for a specific date

POST /api/fields/:id/bookings Book a slot (authenticated)

DELETE /api/fields/:id/bookings/:bookingId Cancel a booking (authenticated)

GET /api/tournaments?q=query List of tournaments

POST /api/tournaments Create a new tournament (authenticated)

GET /api/tournaments/:id Tournament details

PUT /api/tournaments/:id Edit tournament data

DELETE /api/tournaments/:id Delete the tournament (creator only)

POST /api/tournaments/:id/matches/generate Generate match schedule

GET /api/tournaments/:id/matches List matches

GET /api/matches/:id Match details

PUT /api/matches/:id/result Enter match result

GET /api/users?q=query List of users (searchable)

GET /api/users/:id Details about a user with the specified id

GET /api/tournaments/:id/standings Tournament standings

GET /api/whoami If authenticated, returns information about the current user

Project Delivery
To deliver a working demo of the project, Docker is strongly recommended so that everything
required to run the application is included.​
Use unique container names, preferably including your surname.
An example of a configuration with two containers using Node.js and MongoDB is shown
below:

version: "3"

services:

 app:

 container_name: app

 build: .

 command: nodemon --watch /usr/src/app -e js app.js

 ports:

 - "3000:3000"

 volumes:

 - ./app:/usr/src/app

 links:

 - "mongo:mongosrv"

 mongo:

 container_name: mongo

 image: mongo

 volumes:

 - ./data:/data/db

 ports:

 - '27017:27017'

Associato ad un Dockerfile per il container “app”:
FROM node:latest

RUN mkdir -p /usr/src/app

WORKDIR /usr/src/app

RUN npm install -g nodemon

COPY ./app/package.json /usr/src/app

RUN npm install

COPY ./app /usr/src/app

EXPOSE 3000

You may use any database (MongoDB, MySQL, PostgreSQL). If you use a database, you
must provide a script to initialize the schema/collections. Do not submit: gigabytes of
database data, node modules or similar dependency folders (these will be installed via
package managers).

https://www.docker.com/

	Web Application Programming 2025/26
	Introduction
	Rules
	Main Features
	Authentication

	REST Interface
	Project Delivery

